Вконтакте Facebook Twitter Лента RSS

Что можно отнести к съемным цифровым носителям. Современные информационные носители сообщение


1) Бумажные носители информации .

Одним из самых распространенных носителей информации является бумага. В школе мы записываем информацию в тетради, теоретический материал изучаем по учебникам, при разработке доклада, реферата или другого сообщения необходимые сведения мы находим в других источниках (книгах, энциклопедиях, словарях и т.д)(рис.5), которые в свою

очередь являются бумажными носителями информации

Первые вычислительные машины работали на перфокартах. (рис.6, рис.7)

Магнитная лента оказалась достаточно надежным, долговечным и доступным каждому носителем информации.

В первых ЭВМ (электронно- вычислительных машинах) информация хранилась на магнитных лентах и магнитных дисках (слайд 17- первая ЭВМ)

(Объяснение учителя сопровождается демонстрацией магнитных дисков.

На каждую парту раздается одна дискета для « исследовании»я ее учащимися)

В современных компьютерах в качестве носителя информации используются следующие магнитные носители:

1) дискета (на которую можно поместить данные 3000 перфокарт).

2) жесткий магнитный диск или винчестер (хранит 100 000 и более дискет). Внутри жесткого металлического корпуса находятся несколько десятков дисков магнитных дисков, размещенных на одной оси (рис.12). Запись или считывание информации обеспечивается несколькими магнитными головками. В целях сохранения информации и работоспособности жесткие магнитные диски необходимо оберегать от

ударов и резких изменений положений системного блока (нельзя

Наклонять и переворачивать в процессе работы).

3) стриммеры (стрим-картриджи)- устройства, обеспечивающие запись или считывание звуковой информации (рис.13). Внутри данного носителя находится магнитная лента.

Лазерные диски изготавливают из пластмассы, сверху покрывают тонким слоем из металла и прозрачным лаком, защищающим от незначительных царапин или загрязнений. Запись или считывание информации в CD-дисководе осуществляется с помощью света лазера. При записи лазерный луч выжигает на поверхности диска микроскопические углубления, кодируя тем самым информацию (при считывании -лазерный луч отражается от поверхности вращающегося диска). Такие диски следует оберегать от пыли и царапин.

Различают CD и DVD диски.

Вопросы: - Какую информацию можно записать на CD и DVD- диски? (DVD называют цифровым видеодиском, следовательно на него можно записать видео- и звуковую информацию, на CD-диск можно записать текстовую, графическую, звуковую информацию).

По способу записи, лазерные диски делятся на следующие виды:

· CD-ROM , DVD-ROM - предназначены только для чтения. Записать или удалить информацию с такого диска нельзя. К таким дискам относятся обучающие, игровые программы, электронные учебники и т.д

· CD-R , DVD-R -записать информацию на диск можно только один раз. После записи удалить данные нельзя.



· CD-RW , DVD-RW- записать информацию на такой диск можно несколько раз.

Человек всегда стремился не только узнать как можно больше об окружающем мире, но и передать всю накопленную информацию будущим поколениям. В данной статье мы рассмотрим, хотя и кратко, развитие способов хранения и передачи информации, эволюцию информационных носителей, начиная от каменной стены в пещере и заканчивая последними разработками в сфере высоких технологий.

Преданья старины глубокой...

Вскоре, с появлением первых цивилизаций пиктография преобразуется в иероглифику и клинопись. В новой знаковой системе уже появились абстрактные понятия, исчисление и др. Да и сама знаковая система по размерам стала меньше.

Носители информации также изменились: теперь каменные стены стали рукотворными, резьба по камню стала более искусной. Также появились компактные носители информации: папирусные листы в Египте и глиняные таблички в Междуречье.

Чем ближе к нашим дням, тем дешевле и компактнее становились носители информации, объем информации при этом увеличивался на порядки, языковая знаковая система становилась все проще.

От папируса человечество перешло к пергаменту, от пергамента – к бумаге. От иероглифики к алфавитному письму (даже сегодняшние иероглифические языки – китайский, японский, корейский – имеют в своей основе стандартный алфавитный набор).

Вот так за несколько абзацев мы окинули взором прошлое языка и носителей информации и, практически, вплотную подошли к основной теме.

Эволюция носителей информации в XX-XXI вв

Перфокарты и перфоленты

С развитием машиностроения и автоматизации производства стало необходимо программирование станков и машин – задание последовательного набора операций для рационализации производства. Для этого был создан двоичный язык (0/1 – выкл/вкл), а первым носителем информации на двоичном языке стала перфокарта. Лист из плотной бумаги разбивался на определенное количество ячеек, одни из них пробивались, другие оставались целыми. Стандартная перфокарта несла на себе информацию в 80 символов.

Позднее по тому же принципу работы стала использоваться перфолента – рулон бумажной или нитроцеллюлозной ленты с пробитыми отверстиями. Плюсом перфоленты была относительно высокая скорость чтения (до 1500 Б\сек), но низкая прочность ленты и невозможность ручного редактирования информации (к примеру, перфокарту можно было вытащить из колоды и вручную пробить необходимые биты).

Магнитная лента

На смену бумажным носителям пришли магнитные. Сначала это была особым образом намагниченная проволока (такой носитель и сейчас используется в черных ящиках самолетов), затем ее сменила гибкая магнитная лента, которая наматывалась в бобины или компакт-кассеты. Принцип записи в чем-то схож с перфорированием. Магнитная лента разделяется по ширине на несколько независимых дорожек; проходя через магнитную записывающую головку, необходимый участок ленты намагничивается (аналогично пробитому участку перфоленты), впоследствии намагниченный участок будет считываться вычислительной техникой как 1, не намагниченный – как 0.

Гибкие магнитные диски

Вслед за магнитной лентой был изобретен гибкий магнитный диск – круг из плотного гибкого пластика с нанесенным на поверхность магнитным слоем. Первые гибкие диски были восьмидюймовыми, позднее им на смену пришли уже более нам привычные 5,25-дюймовые и 3,5-дюймовые. Последние продержались на рынке носителей информации вплоть до середины 2000-х годов.

Накопители на жестких магнитных дисках

Параллельно гибким магнитным носителям развивались носители на жестких магнитных дисках (НЖМД, жесткий диск, HDD). Первая рабочая модель HDD была создана в 1956 году компанией IBM (модель IBM 350). Объем IBM 350 был 3,5 Мб, что по тем временам было достаточно много. По размерам первый HDD был как большой холодильник и весил чуть меньше тонны.

За тридцать лет размеры жесткого диска удалось уменьшить до формата 5,25-дюйма (размер оптического привода), еще через десять лет жесткие диски стали привычного нам 3,5-дюймового формата.

Объем в 1 Гбайт был преодолен в середине 1990-х годов, а в 2005 году был достигнут максимальный объем для продольной записи – 500 Гб. В 2006 году был выпущен первый жесткий диск с перпендикулярным методом записи объемом в 500 Гб. В 2007 году пройден рубеж в 1 Тб (модель выпущена компанией Hitachi). На данный момент самый большой объем коммерческой модели HDD составляет 3 Тб.

Флеш-память - разновидность полупроводниковой технологии электрически перепрограммируемой памяти (EEPROM). Благодаря компактности, дешевизне, механической прочности, большому объему, скорости работы и низкому энергопотреблению флеш-память широко используется в цифровых портативных устройствах и носителях информации.

Различают два основных типа флеш-памяти: NOR и NAND .

NOR-память используется в качестве энергонезависимой памяти небольшого объема, требующей быстрого доступа без аппаратных сбоев (кэш микропроцессора, микросхемы POST и BIOS).

NAND-память используется в большинстве электронных устройств в качестве основного носителя информации (сотовые телефоны, телевизоры, медиаплееры, игровые приставки, фоторамки, навигаторы, сетевые маршрутизаторы, точки доступа и т.д.). Так же NAND-память используется в SSD-накопителях, альтернативе жестких магнитных дисков, и в качестве кэш-памяти в гибридных жестких дисках. Так же не стоит забывать и о флэш-картах всех форм-факторов и типов подключения.

Самый весомый минус флэш-памяти – ограниченное число циклов записи на носитель. Связано это с самой технологией работы перепрограммируемой памяти.

Оптические диски

Данные носители представляют из себя диски из поликарбоната с нанесенным на одну из сторон специального металлического покрытия. Запись и последующее чтение проводится с помощью специального лазера. Во время записи на металлическом покрытии лазер проделывает специальные ямки (питы), которые при последующем чтении лазерным дисководом будут читаться как «1».

Все развитие оптических носителей можно разделить на четыре части:

Первое поколение: лазерные диски, компакт-диски, магнитооптические диски. Основная особенность – относительно дорогие диски небольшого объема, приводы обладают большим энергопотреблением (напрямую связано с технологией записи и чтения дисков). Компакт-диски немного выбиваются из этого определения (видимо поэтому они и заняли главенствующее положение до появления второго поколения оптических дисков).

Второе поколение: DVD, MiniDisc, Digital Multilayer Disk, DataPlay, Fluorescent Multilayer Disc, GD-ROM, Universal Media Disc. Что отличает второе поколение оптических дисков от первого? В первую очередь, высокая плотность записи информации (в 6-10 раз). Кроме DVD, в основном имеют специализированное применение (MD – для аудиозаписей, UMD – для приставок Sony PlayStation). Кроме DVD, всем остальным форматам требуется дорогое оборудование для записи и чтения информации (особенно, DMD и FMD, в которых используется многослойная и многомерная технологии хранения).

Третье поколение: Blu-ray Disc, HD DVD, Forward Versatile Disc, Ultra Density Optical, Professional Disc for DATA, Versatile Multilayer Disc. Данные оптические диски необходимы в для хранения видео высокой четкости. Основная особенность - использование сине=фиолетового лазера для записи и чтения информации в место красного (кроме VMD). Это позволяет еще больше увеличить плотность записи (в 6-10 раз по сравнению со вторым поколением).

Как и в любой эволюции, в развитии оптических дисков есть основная ветвь развития и побочные ветви. В качестве основной ветви выступают типы оптических дисков, получившие наибольшее распространение и наибольший коммерческий успех: компакт-диски, DVD, Blu-Ray. Остальные типы оптических дисков либо зашли в тупик в своем развитии, либо имеют специализированное применение.

Четвертое поколение (ближайшее будущее) : Holographic Versatile Disc. Основной революционной технологией в развитии оптических носителей информации считается технология голографической записи, позволяющая увеличить плотность записи на оптический диск примерно в 60-80 раз. Первые голографические диски были представлен еще в 2006 году, а сам технологический стандарт был окончательно утвержден в 2007 году. Но воз пока и ныне там. В 2010 году было объявлено, что преодолена планка объема носителя в 515 Гб, но данная модель голографического диска не была пущена в производство.

Введение…………………………………………………………………………...3

Носители информации……………………………………………………………4

Кодирование и считывание информации..………………………………………9

Перспективы развития…………………….…………………………………….15

Заключение……………………………………………………………………….18

Литература.………………………………………………………………………19

Введение

В 1945 г. Джон фон Нейман (1903-1957), американский ученый, выдвинул идею использования внешних запоминающих устройств для хранения программ и данных. Нейман разработал структурную принципиальную схему компьютера. Схеме Неймана соответствуют и все современные компьютеры.

Внешняя память предназначена для долговременного хранения программ и данных. Устройства внешней памяти (накопители) являются энергонезависимыми, выключение питания не приводит к потере данных. Они могут быть встроены в системный блок или выполнены в виде самостоятельных блоков, связанных с системным через его порты. По способу записи и чтения накопители делятся, в зависимости от вида носителя, на магнитные, оптические и магнитооптические.

Кодирование информации – это процесс формирования определенного представления информации. Компьютер может обрабатывать только информацию, представленную в числовой форме. Вся другая информация (например, звуки, изображения, показания приборов и т. д.) для обработки на компьютере должна быть преобразована в числовую форму. Как правило, все числа в компьютере представляются с помощью нулей и единиц (а не десяти цифр, как это привычно для людей). Иными словами, компьютеры обычно работают в двоичной системе счисления, поскольку при этом устройства для их обработки получаются значительно более простыми.

Считывание информации – извлечение информации, хранящейся в запоминающем устройстве (ЗУ), и передача её в др. устройства вычислительной машины. Считывание информации производится при выполнении большинства машинных операций, а иногда является самостоятельной операцией.

В ходе реферата рассмотрим основные типы носителей информации, кодирования и считывания информации, а также перспективы развития.

Носители информации

Исторически первыми носителями информации были перфоленточные и перфокарточные устройства ввода-вывода. Вслед за ними пришли внешние записывающие устройства в виде магнитных лент, сменных и постоянных магнитных дисков и магнитных барабанов.

Магнитные ленты хранят и используют намотанными на катушки. Выделялись катушки двух видов: подающие и принимающие. Ленты поставляются пользователям на подающих катушках и не требуют дополнительной перемотки при установке их в накопители. Лента на катушку наматывается рабочим слоем внутрь. Магнитные ленты относятся к накопителям непрямого доступа. Это значит, что время поиска любой записи зависит от ее местоположения на носителе, так как физическая запись не имеет своего адреса и чтобы её просмотреть необходимо просмотреть предыдущие. К запоминающим устройствам прямого доступа относятся магнитные диски и магнитные барабаны. Основная особенность их заключается в том, что время поиска любой записи не зависит от ее местоположения на носителе. Каждая физическая запись на носителе имеет адрес, по которому обеспечивается непосредственный доступ к ней, минуя остальные записи. Следующим видом записывающих устройств стали пакеты сменных магнитных дисков, состоящие из шести алюминиевых дисков. Ёмкость всего пакета составляла 7,25 Мбайт.

Рассмотрим более подробно современные носители информации.

1. Накопитель на гибких магнитных дисках (НГМД – дисковод).

Это устройство использует в качестве носителя информации гибкие магнитные диски – дискеты, которые могут быть 5-ти или 3-х дюймовыми. Дискета – это магнитный диск вроде пластинки, помещенный в «конверт». В зависимости от размера дискеты изменяется ее емкость в байтах. Если на стандартную дискету размером 5’25 дюйма помещается до 720 Кбайт информации, то на дискету 3’5 дюйма уже 1,44 Мбайта. Дискеты универсальны, подходят на любой компьютер того же класса оснащенный дисководом, могут служить для хранения, накопления, распространения и обработки информации. Дисковод – устройство параллельного доступа, поэтому все файлы одинаково легко доступны. Диск покрывается сверху специальным магнитным слоем, который обеспечивает хранение данных. Информация записывается с двух сторон диска по дорожкам, которые представляют собой концентрические окружности. Каждая дорожка разделяется на секторы. Плотность записи данных зависит от плотности нанесения дорожек на поверхность, т. е. числа дорожек на поверхности диска, а также от плотности записи информации вдоль дорожки. К недостаткам относятся маленькая емкость, что делает практически невозможным долгосрочное хранение больших объемов информации, и не очень высокая надежность самих дискет. В настоящее време дискеты практически не используются.

2. Накопитель на жестком магнитном диске (НЖМД – винчестер)

Является логическим продолжением развития технологии магнитного хранения информации. Основные достоинства:

– большая емкость;

– простота и надежность использования;

– возможность обращаться к множеству файлов одновременно;

– высокая скорость доступа к данным.

Из недостатков можно выделить лишь отсутствие съемных носителей информации, хотя в настоящее время используются внешние винчестеры и системы резервного копирования.

В компьютере предусмотрена возможность с помощью специальной системной программы условно разбивать один диск на несколько. Такие диски, которые не существуют как отдельное физическое устройство, а представляют лишь часть одного физического диска, называются логическими дисками. Логическим дискам присваиваются имена, в качестве которых используются буквы латинского алфавита [С:], , [Е:], и т. д.

3. Устройство чтения компакт-дисков (CD-ROM)

В этих устройствах используется принцип считывания сфокусированным лазерным лучом бороздок на металлизированном несущем слое компакт-диска. Этот принцип позволяет достичь высокой плотности записи информации, а, следовательно, и большой емкости при минимальных размерах. Компакт-диск является отличным средством хранения информации, он дешевый, практически не подвержен каким-либо влияниям среды, информация, записанная на нем не исказится и не сотрется, пока диск не будет уничтожен физически, его ёмкость 650 Мбайт. Имеет только один недостаток – сравнительно небольшой объём хранения информации.

4. DVD

А) Отличия DVD от обычных CD-ROM

Самое основное отличие – это, естественно, объем записываемой информации. Если на обычный CD-диск можно записать 650 Мб (хотя в последнее время встречаются болванки и на 800 Мб, но далеко не все приводы смогут прочитать то, что записано на таком носителе), то на один DVD-диск влезет от 4,7 до 17 Гб. В DVD используется лазер с меньшей длиной волны, что позволило существенно увеличить плотность записи, а кроме того, DVD подразумевает возможность двухслойной записи информации, то есть на поверхности компакта находится один слой, поверх которого наносится еще один, полупрозрачный, и первый считывается сквозь второй параллельно. В самих носителях тоже отличий больше, чем кажется на первый взгляд. Из-за того, что плотность записи существенно возросла, а длина волны стала меньше, изменились и требования к защитному слою – для DVD он составляет 0,6 мм против 1,2 мм у обычных CD. Естественно, что диск такой толщины будет значительно более хрупким, по сравнению с классической болванкой. Поэтому еще 0,6 мм обычно заливаются пластиком с двух сторон, чтобы получились те же 1,2 мм. Но самый главный бонус такого защитного слоя в том, что благодаря его малому размеру на одном компакте стало возможным записывать информацию с двух сторон, то есть удваивать его емкость, при этом оставляя размеры практически прежними.

Б) Емкость DVD

Существует пять разновидностей DVD-дисков:

1. DVD5 – однослойный односторонний диск, 4,7 Гб, или два часа видео;

2. DVD9 – двухслойный односторонний диск, 8,5 Гб, или четыре часа видео;

3. DVD10 – однослойный двухсторонний диск, 9,4 Гб, или 4,5 часа видео;

4. DVD14 – двухсторонний диск, два слоя на одной и один на другой стороне, 13,24 Гб, или 6,5 часов видео;

5. DVD18 – двухслойный двухсторонний диск, 17 Гб, или более восьми часов видео.

Самые популярные стандарты – DVD5 и DVD9.

В) Возможности

Ситуация с DVD-носителями сейчас напоминает аналогичную с CD, на которых долгое время тоже хранили только музыку. Сейчас можно встретить не только фильмы, но и музыку (так называемые DVD-Audio) и сборники софта, и игры, и фильмы. Естественно, что основной областью использования является кинопродукция.

Г) Звук в DVD

Звуковое сопровождение может быть закодировано во многих форматах. Самые известные и часто используемые – Dolby Prologic, DTS и Dolby Digital всех версий. То есть фактически в форматах, используемых в кинотеатрах для получения максимально точной и красочной звуковой картины.

Д) Механические повреждения

К механическим повреждениям диски CD и DVD одинаково чувствительны. То есть царапина есть царапина. Однако из-за гораздо более высокой плотности записи потери на DVD-диске будут более значительными. Сейчас существуют программы, которые могут восстанавливать информацию даже с поврежденных дисков, правда с пропуском повреждённых секторов.

Быстрорастущий рынок портативных жестких дисков, предназначенных для транспортировки больших объемов данных, привлек к себе внимание одного из самых крупных производителей винчестеров. Компания Western Digital объявила о выпуске сразу двух моделей устройств под названием WD Passport Portable Drive. В продажу поступили варианты емкостью 40 и 80 Гб. Портативные устройства WD Passport Portable Drive основаны на 2,5-дюймовых HDD WD Scorpio EIDE. Они упакованы в прочный корпус, оборудованы поддержкой технологии Data Lifeguard, и не нуждаются в дополнительном источнике питания (питание через USB). Производитель отмечает, что накопители не греются, работают тихо и потребляют мало энергии.

6. USB Flash Drive

Новый тип внешнего носителя информации для компьютера, появившийся благодаря широкому распространению интерфейса USB(универсальной шины) и преимуществам микросхем Flash памяти. Достаточно большая емкость при небольших размерах, энергонезависимость, высокая скорость передачи информации, защищённость от механических и электромагнитных воздействий, возможность использования на любом компьютере - всё это позволило USB Flash Drive заменить или успешно конкурировать со всеми существовавшими ранее носителями информации.

Кодирование и считывание информации

Современный компьютер может обрабатывать числовую, текстовую, графическую, звуковую и видео информацию. Все эти виды информации в компьютере представлены в двоичном коде, т. е. используется алфавит мощностью два (всего два символа 0 и 1). Связано это с тем, что удобно представлять информацию в виде последовательности электрических импульсов: импульс отсутствует (0), импульс есть (1). Такое кодирование принято называть двоичным, а сами логические последовательности нулей и единиц – машинным языком.

Каждая цифра машинного двоичного кода несет количество информации равное одному биту. Данный вывод можно сделать, рассматривая цифры машинного алфавита, как равновероятные события. При записи двоичной цифры можно реализовать выбор только одного из двух возможных состояний, а, значит, она несет количество информации равное 1 бит. Следовательно, две цифры несут информацию 2 бита, четыре разряда – 4 бита и т. д. Чтобы определить количество информации в битах, достаточно определить количество цифр в двоичном машинном коде.

А) Кодирование текстовой информации

В настоящее время большая часть пользователей при помощи компьютера обрабатывает текстовую информацию, которая состоит из символов: букв, цифр, знаков препинания и др. Традиционно для того чтобы закодировать один символ используют количество информации равное 1 байту, т. е. I = 1 байт = 8 бит. При помощи формулы, которая связывает между собой количество возможных событий К и количество информации I, можно вычислить сколько различных символов можно закодировать (считая, что символы - это возможные события): К = 2I = 28 = 256, т. е. для представления текстовой информации можно использовать алфавит мощностью 256 символов. Суть кодирования заключается в том, что каждому символу ставят в соответствие двоичный код от 00000000 до 11111111 или соответствующий ему десятичный код от 0 до 255. Необходимо помнить, что в настоящее

Двоичный код Десятичный код КОИ8 СР1251 СР866 Мас ISO
11000010 194 б В - - Т

время для кодировки русских букв используют пять различных кодовых

таблиц (КОИ - 8, СР1251, СР866, Мас, ISO), причем тексты, закодированные при помощи одной таблицы, не будут правильно отображаться в другой кодировке. Наглядно это можно представить в виде фрагмента объединенной таблицы кодировки символов. Одному и тому же двоичному коду ставится в соответствие различные символы. Впрочем, в большинстве случаев о перекодировке текстовых документов заботится на пользователь, а специальные программы – конверторы, которые встроены в приложения.

Б) Кодирование графической информации

В середине 50-х годов для больших ЭВМ, которые применялись в научных и военных исследованиях, впервые в графическом виде было реализовано представление данных. Без компьютерной графики трудно представить уже не только компьютерный, но и вполне материальный мир, так как визуализация данных применяется во многих сферах человеческой деятельности. Графическую информацию можно представлять в двух формах: аналоговой или дискретной. Живописное полотно, цвет которого изменяется непрерывно - это пример аналогового представления, а изображение, напечатанное при помощи струйного принтера и состоящее из отдельных точек разного цвета - это дискретное представление. Путем разбиения графического изображения (дискретизации) происходит преобразование графической информации из аналоговой формы в дискретную. При этом производится кодирование - присвоение каждому элементу конкретного значения в форме кода. При кодировании изображения происходит его пространственная дискретизация. Ее можно сравнить с построением изображения из большого количества маленьких цветных фрагментов (метод мозаики). Все изображение разбивается на отдельные точки, каждому элементу ставится в соответствие код его цвета. При этом качество кодирования будет зависеть от следующих параметров: размера точки и количества используемых цветов. Чем меньше размер точки, а, значит, изображение составляется из большего количества точек, тем выше качество кодирования. Чем большее количество цветов используется (т. е. точка изображения может принимать больше возможных состояний), тем больше информации несет каждая точка, а, значит, увеличивается качество кодирования. Создание и хранение графических объектов возможно в нескольких видах – в виде векторного, фрактального или растрового изображения. Отдельным предметом считается 3D (трехмерная) графика, в которой сочетаются векторный и растровый способы формирования изображений. Она изучает методы и приемы построения объемных моделей объектов в виртуальном пространстве. Для каждого вида используется свой способ кодирования графической информации.

В) Кодирование звуковой информации

С самого детства мы сталкиваемся с записями музыки на разных носителях: грампластинках, кассетах, компакт-дисках и т.д. В настоящее время существует два основных способах записи звука: аналоговый и цифровой. Но для того чтобы записать звук на какой-нибудь носитель его нужно преобразовать в электрический сигнал. Это делается с помощью микрофона. Самые простые микрофоны имеют мембрану, которая колеблется под воздействием звуковых волн. К мембране присоединена катушка, перемещающаяся синхронно с мембраной в магнитном поле. В катушке возникает переменный электрический ток. Изменения напряжения тока точно отражают звуковые волны. Переменный электрический ток, который появляется на выходе микрофона, называется аналоговым сигналом. Применительно к электрическому сигналу «аналоговый» обозначает, что этот сигнал непрерывен по времени и амплитуде. Он точно отражает форму звуковой волны, которая распространяется в воздухе. Звуковую информацию можно представить в дискретной или аналоговой форме. Их отличие в том, что при дискретном представлении информации физическая величина изменяется скачкообразно («лесенкой»), принимая конечное множество значений. Если же информацию представить в аналоговой форме, то физическая величина может принимать бесконечное количество значений, непрерывно изменяющихся. Виниловая пластинка является примером аналогового хранения звуковой информации, так как звуковая дорожка свою форму изменяет непрерывно. Но у аналоговых записей на магнитную ленту есть большой недостаток – старение носителя. За год фонограмма, которая имела нормальный уровень высоких частот, может их потерять. Виниловые пластинки при проигрывании их несколько раз теряют качество. Поэтому преимущество отдают цифровой записи. В начале 80-х годов появились компакт-диски. Они являются примером дискретного хранения звуковой информации, так как звуковая дорожка компакт - диска содержит участки с различной отражающей способностью. Теоретически эти цифровые диски могут служить вечно, если их не царапать, т.е. их преимуществами являются долговечность и неподверженность механическому старению. Другое преимущество заключается в том, что при цифровой перезаписи нет потери качества звука. На мультимедийных звуковых картах можно найти аналоговые микрофонный предусилитель и микшер. Рассмотрим процессы преобразования звука из аналоговой формы в цифровую и наоборот. Примерное представление о том, что происходит в звуковой карте, может помочь избежать некоторых ошибок при работе со звуком. Звуковые волны при помощи микрофона превращаются в аналоговый переменный электрический сигнал. Он проходит через звуковой тракт и попадает в аналого-цифровой преобразователь (АЦП) – устройство, которое переводит сигнал в цифровую форму. В упрощенном виде принцип работы АЦП заключается в следующем: он измеряет через определенные промежутки времени амплитуду сигнала и передает дальше, уже по цифровому тракту, последовательность чисел, несущих информацию об изменениях амплитуды. Во время аналого-цифрового преобразования никакого физического преобразования не происходит. С электрического сигнала как бы снимается отпечаток или образец, являющийся цифровой моделью колебаний напряжения в аудиотракте. Если это изобразить в виде схемы, то эта модель представлена в виде последовательности столбиков, каждый из которых соответствует определенному числовому значению. Цифровой сигнал по своей природе дискретен - то есть прерывист, поэтому цифровая модель не совсем точно соответствует форме аналогового сигнала. Вывод цифрового звука происходит при помощи цифро-аналогового преобразователя (ЦАП), который на основании поступающих цифровых данных в соответствующие моменты времени генерирует электрический сигнал необходимой амплитуды.

Считывание информации – извлечение информации, хранящейся в запоминающем устройстве (ЗУ), и передача её в др. устройства вычислительной машины. Считывание информации производится при выполнении большинства машинных операций, а иногда является самостоятельной операцией. Считывание может сопровождаться разрушением (стиранием) информации в тех ячейках (зонах) ЗУ, откуда производилось считывание (как, например, в ЗУ на ферритовых сердечниках), или быть неразрушающим (например, в ЗУ на магнитных лентах, дисках) и, следовательно, допускающим многократное использование однажды записанной информации. Считывание информации характеризуется временем, затрачиваемым непосредственно на вывод данных из ЗУ; оно составляет от нескольких десятков наносек до нескольких милисек.

Рассмотрим процесс считывания информации на примере компакт-диска. Данные с диска читаются при помощи лазерного луча с длиной волны 780 нм. Принцип считывания информации лазером для всех типов носителей заключается в регистрации изменения интенсивности отражённого света. Лазерный луч фокусируется на информационном слое в пятно диаметром ~1,2 мкм. Если свет сфокусировался между питами (на ленде), то фотодиод регистрирует максимальный сигнал. В случае, если свет попадает на пит, фотодиод регистрирует ме́ньшую интенсивность света. Различие между дисками «только для чтения» и дисками однократной/многократной записи заключается в способе формирования питов. В случае диска «только для чтения» питы представляют собой некую рельефную структуру (фазовую дифракционную решетку), причём оптическая глубина каждого пита чуть меньше четверти длины волны света лазера, что приводит к разнице фаз в половину длины волны между светом, отражённым от пита и светом, отражённым от ленда. В результате в плоскости фотоприёмника наблюдается эффект деструктивной интерференции и регистрируется снижение уровня сигнала. В случае CD-R/RW пит представляет собой область с бо́льшим поглощением света, нежели ленд (амплитудная дифракционная решетка). В результате фотодиод также регистрирует снижение интенсивности отражённого от диска света. Длина пита изменяет как амплитуду, так и длительность регистрируемого сигнала.

Скорость чтения/записи CD указывается кратной 150 Кб/с (то есть 153 600 байт/с). Например, 48-скоростной привод обеспечивает максимальную скорость чтения (или записи) CD, равную 48 × 150 = 7200 Кб/с (7,03 Мб/с).

Перспективы развития

Развитие носителей записи информации идет в 3 основных направлениях:

а) увеличение объема полезной информации на конкретном носителе (особенно актуально для оптических дисков);

б) улучшение качества технического оборудования (время доступа к информации, скорость передачи данных);

в) постепенное повышение уровня сочетаемости различных форматов используемых носителей.

К перспективным видам носителей памяти относятся: Eye-Fi, Голографический многоцелевой диск (Holographic Versatile Disc), Millipede.

Eye-Fi - разновидность SD флеш-карт памяти со встроенными внутри карты аппаратными элементами поддержки Wi-Fi-технологии.

Карты могут быть использованы в любом цифровом фотоаппарате. Карта вставляется в соответствующее гнездо фотоаппарата, получая питание от фотоаппарата и при этом расширяя его функционал. Фотоаппарат, оснащённый такой картой может передавать отснятые фотоснимки или видеоролики на компьютер, в мировую сеть интернет на заранее запрограммированные ресурсы, которые осуществляют фото или видео хостинг подобного рода контента. Администрирование, доступ к настройкам и управление работой таких карт осуществляется по Wi-Fi с PC или Mac совместимого компьютера через браузер. Карта работает только через заранее прописанные Wi-Fi сети, поддерживаются шифрование WEP и WPA2.

Технические характеристики:

Емкость карты: 2, 4 или 8 Гигабайта

Поддерживаемые стандарты Wi-Fi: 802.11b, 802.11g

Безопасность Wi-Fi: cтатический WEP 64/128, WPA-PSK, WPA2-PSK

Размеры карты: SD стандарт - 32 х 24 х 2.1 мм

Вес карты: 2.835 г

Голографический многоцелевой диск (Holographic Versatile Disc) - разрабатываемая перспективная технология производства оптических дисков, которая предполагает значительно увеличить объём хранимых на диске данных по сравнению сBlu-Ray и HD DVD. Она использует технологию, известную как голография, которая использует два лазера: один - красный, а второй - зелёный, сведённые в один параллельный луч. Зелёный лазер читает данные, закодированные в виде сетки с голографического слоя близкого к поверхности диска, в то время как красный лазер используется для чтения вспомогательных сигналов с обычного компакт-дискового слоя в глубине диска. Вспомогательная информация используется для отслеживания позиции чтения, наподобие системы CHS в обычном жёстком диске. На CD или DVD эта информация внедрена в данные. Предполагаемая информационная ёмкость этих дисков - до 3.9 терабайт (TB), что сравнимо с 6000 CD, 830 DVD или 160 однослойными дисками Blu-ray; скорость передачи данных - 1 Гбит/сек. Optware собирался выпустить 200GB диск в начале июня 2006 года и Maxell в сентябре 2006 с ёмкостью 300GB. 28 июня 2007 года HVD стандарт был утверждён и опубликован.

Структура голографического диска (HVD)

1. Зелёный лазер чтения/записи (532nm)

2. Красный позиционирующий/индексный лазер (650nm)

3. Голограмма (данные)

4. Поликарбонатный слой

5. Фотополимерный (рhotopolimeric) слой (слой содержащий данные)

6. Разделяющий слой (Distans layers)

7. Слой отражающий зелёный цвет (Dichroic layer)

8. Алюминиевый отражающий слой (отражающий красный свет)

9. Прозрачная основа

P. Углубления

Millipede – относительно новая технология запоминающих устройств, разрабатываемая компанией IBM. Для считывания и записи информации используется зонд сканирующего зондового микроскопа. Также вопросами Millipede memory (Милипидовой памяти) занимаются учёные из Университета науки и технологий в Поханге (Южная Корея). Они смогли первыми в мире создать материал, подходящий для создания миллипидовой памяти. Особенность миллипидовой памяти заключается в том, что информация сохраняется в огромном количестве наноямок, покрывающем поверхность рабочего материала. При этом подобная память является энергонезависимой, и данные сохраняются в ней сколь угодно долго. Для создания действующего прототипа миллипидовой памяти корейские электронщики разработали уникальный полимерный материал. Только с его помощью удалось создать стабильно функционирующее запоминающее устройство, которое уже практически готово к внедрению в производство.

Заключение

В ходе реферата были рассмотрены основные виды носителей информации, принципы кодирования и считывания информации, а также перспективы развития носителей информации.

Также были рассмотрены история носителей информации (перфоленты, перфокарты, магнитные ленты, сменные и постоянные магнитные диски, магнитные барабаны, пакеты сменных магнитных дисков); накопители на гибких магнитных дисках, накопители на жестких магнитных дисках, CD-диски, DVD-диски, портативные USB-накопители, USB Flash Drive. Были рассмотрены кодирование (текстовое, графическое, звуковое) и считывание информации (на примере считывание информации с CD-диска). Самыми перспективными на сегодняшний день считаются Eye-Fi, Голографический многоцелевой диск (Holographic Versatile Disc) и Millipede.

, пластик со специальными свойствами (например, в оптических дисках) и другие.

Носителем информации может быть любой объект, с которого возможно (доступно) чтение (считывание) имеющейся на нём (нанесённой, записанной) информации.

Носители информации в науке (библиотеки), технике (скажем, для нужд связи), общественной жизни (СМИ), быту применяются для:

  • записи;
  • хранения;
  • чтения;
  • передачи (распространения);
  • создания произведений компьютерного искусства .

Зачастую сам носитель информации помещается в защитную оболочку, повышающую его сохранность и, соответственно, надёжность сохранения информации (к примеру: бумажные листы помещают в обложку, микросхему памяти - в пластик (смарт-карта), магнитную ленту - в корпус и т. д.).

Энциклопедичный YouTube

    1 / 5

    ✪ Видео #4. Основной носитель информации (HDD и SSD)

    ✪ Носители информации | Информатика 5 класс #8 | Инфоурок

    ✪ ВИБРАЦИИ КРЕЩЕНИЯ. СТРУКТУРИРОВАННАЯ ВОДА. НОСИТЕЛЬ ИНФОРМАЦИИ. ОБНУЛЕНИЕ НА КРЕЩЕНИЕ

    ✪ мысль, как носитель информации. Йога и бессмертие

    ✪ Алена Дмитриева. Лимфа как носитель информации и энергии. Как повысить энергетику тела?

    Субтитры

    Жесткий диск является внешним носителем информации и он, с моей точки зрения, имеет наиболее важную функцию для пользователя. Дело в том, что на нем находится операционная система, прикладные программы и пользовательские файлы, то есть все то, что и позволяет использовать компьютер по назначению. Понимание сути работы жесткого диска позволит грамотно настраивать области хранения информации, а также самостоятельно диагностировать проблемы, которые довольно часто связаны именно с этим устройством. Название «жесткий диск» (Hard Disk Drive) закрепилась за этим устройством давно и связано оно с тем, что предшественником жесткого диска были дискеты (Floppy Disk), которые называли гибкими дисками. Дискеты уже никто не использует, ну а название «жесткий диск» так и осталось. Сейчас я не буду детально углубляться в устройство жесткого диска, так как у меня есть целый небольшой видеокурс, посвященных этому вопросу. Скажу лишь, что жесткий диск - это единственное механическое устройство в компьютере и именно этот факт накладывает ряд ограничений. Самое основное ограничение - это скорость чтения-записи данных. В Windows 7 есть так называемый индекс производительности, который оценивает в баллах различные подсистемы компьютера и показывает степень их влияния на общую производительность. К слову сказать, индекс производительности Windows не оправдал ожидания разработчиков операционной системы и по нему довольно сложно ориентироваться при выборе программного обеспечения, а именно такая задача была изначально на него возложена. Начиная с Windows 8.1 разработчики убрали индекс производительности, а точнее сказать он отсутствует в графическом интерфейсе, хотя с помощью команд можно по-прежнему произвести тест. Чуть позже я расскажу об этом более подробно. Так вот, на общую оценку производительности максимальное влияние оказывает именно жесткий диск, как самое слабое звено. Как я уже сказал, причина довольно проста - электро-механическая конструкция жесткого диска способна обеспечить скорость чтения-записи данных лишь на ограниченном уровне. Скорость чтения-записи напрямую зависит от скорости вращения магнитного барабана и, как вы понимаете, скорость эта ограничена. Обычно она составляет 7200 оборотов в минуту, но есть диски со скоростью вращения и 10000, и 15000 оборотов в минуту. Такие жесткие диски намного дороже и применение их в домашних компьютерах нецелесообразно. Еще лет десять назад скорости передачи данных, которая обеспечивается жесткими дисками, было вполне достаточно, но сейчас производительность других систем компьютера увеличилась в разы и жесткий диск стал самым слабым звеном. Итак, не смотря на ряд очевидных недостатков, жесткий диск и сегодня является самым распространенным носителем информации. Однако у него уже достаточно давно появился конкурент - твердотельный накопитель (SSD - solid-state drive), который, грубо говоря, является большой флешкой. SSD лишен недостатков жесткого диска, например, он абсолютно бесшумен, так как не содержит механических частей, ну и, само собой, он обеспечивает скорость передачи данных в несколько раз превышающую скорость жестких дисков. Но все же я считаю, что жесткий диск еще довольно долго будет лидировать из-за оптимального соотношения его стоимости и объема хранимой информации. Твердотельные накопители все еще довольно дороги и далеко не все могут себе их позволить, хотя можно довольно бюджетно заметно повысить производительность своего компьютера и об этом мы также обязательно поговорим позже. Самое главное, что нужно сейчас понять, что работа операционной системы и установленных на компьютер программ никак не зависит от принципов работы носителя информации. То есть абсолютно неважно используете ли вы жесткий диск или SSD. Если вам интересно устройство жесткого диска, то обратите внимание на мой видеокурс «Жесткие диски: проблемы и решения». В нем я подробно разобрал и устройство жесткого диска, и проблемы, которые наиболее характерны для этих носителей информации. Однако, я бы рекомендовал изучить этот курс после прохождения данного… Ну а сейчас я бы хотел сосредоточить внимание не на физическом устройстве носителей информации, а на программной составляющей, то есть на том, как операционная система воспринимает носитель информации. Этот момент очень важный, так как он напрямую связан с установкой операционной системы на компьютер, а также касается и организации хранения пользовательской информации на компьютере. И о нем речь пойдет в следующем видео.

Классификация носителей

  • для однократной записи;
  • для многократной записи.
  • для долговременного хранения (прекращение выполнения функции носителя обусловлено случайными обстоятельствами);
  • для кратковременного хранения (прекращение функции обусловлено процессами закономерными, приводящими к неизбежной деградации носителя).
В общем случае, границы между этими разновидностями носителей довольно расплывчаты и могут варьироваться, в зависимости от ситуации и внешних условий.

Основные материалы

Для внесения изменений в структуру материала носителя используются различные виды воздействия:

  • механическое (резьба , сверление , шитьё);
  • термическое (выжигание , выпекание [ ]);
  • электрическое (электрические сигналы);
  • химическое (нанесение краски , травление и т. п.);
и другие.

Электронные носители

К электронным носителям относят носители для однократной или многократной записи (обычно цифровой ) электрическим способом:

  • оптические (CD-ROM , DVD -ROM, Blu-ray Disc);
  • полупроводниковые (флеш-память , дискеты и т. п.).

Электронные носители имеют значительные преимущества перед бумажными (листами, газетами , журналами):

  • по объёму (размеру) хранимой информации;
  • по удельной стоимости хранения;
  • по экономичности и оперативности предоставления актуальной (предназначенной для недолговременного хранения) информации;
  • по возможности предоставления информации в виде, удобном потребителю (форматирование , сортировка).

Устройства хранения

Устройство хранения информации состоит из следующих элементов:

  • носитель информации;
  • записывающее устройство - механизмы , выполняющие запись информации на носитель;
  • считывающее устройство (устройство считывания ) - механизмы, выполняющие считывание информации с носителя.

Накопитель информации - устройство хранения информации, способное выполнять дозапись поступающей информации к уже имеющейся.

Эти устройства могут быть основаны на самых разных физических принципах.

Если носитель информации мало распространён, должен быть защищён от внешних воздействий, или же требует сложной настройки, то он может доставляться потребителю в комплекте с устройством считывания/записи (например, музыкальная шкатулка, командоаппарат (электромеханический программатор) стиральной машины ).

История

Необходимость обмена информацией, сохранения письменных свидетельств о своей жизни и т. п. существовала у человека всегда. За всю историю человечества было перепробовано множество носителей информации. Так как носитель обладает рядом параметров, эволюция носителя информации определялась тем, какие требования к нему предъявлялись.

Древние времена

Недостатком данного носителя являлось то, что со временем он темнел и ломался. Дополнительным недостатком стало то, что египтяне ввели запрет на вывоз папируса за границу.

Азия

Недостатки носителей информации (глина, папирус, воск) стимулировали поиск новых носителей. На этот раз сработал принцип «всё новое - хорошо забытое старое»: в ). Книги на пергаменте - палимпсесты (от греч. παλίμψηστον - рукопись, писанная на пергаменте по смытому или соскобленному тексту).

Как и в других странах, в Юго-Восточной Азии испробовали множество разных способов записи и сохранения информации:

Из-за недостатков предыдущих носителей китайский император Лю Чжао приказал найти им достойную замену, и один из чиновников (Цай Лунь) в 105 году н. э. разработал способ производства бумаги (который не сильно изменился и по сию пору) из древесных волокон, соломы, травы, мха, тряпья, пакли, растительных отходов и т. п. Некоторые историки утверждают, что Цай Лунь подсмотрел процесс изготовления бумаги у бумажной осы (строит гнездо из ею пережёванных и смоченных клейкой слюной волокон древесины) τετράς в переводе с греческого - четыре).

Однако на воске надписи недолговечны, и проблема сохранения записей была весьма актуальной.

Электронный носитель информации - это устройство для хранения, накапливания и передачи информации. В персональном компьютере для этой цели используется внутренний накопитель информации, который называется жёсткий диск или винчестер . Название "винчестер" появилось исторически для первого созданного жёсткого диска, некоторые величины параметров которого получились аналогичными величинам калибра охотничьего ружья.
В некоторых случаях пользователь компьютера применяет дополнительные внешние устройства для хранения информации.

Распространёнными внешними носителями информации являются компакт-диски . Они подразделятся на устройства, предназначенные только для чтения уже изначально записанной на них информации, устройства, предназначенные для однократной записи информации и дальнейшего чтения и устройства, предназначенные для многократного записывания, стирания информации и чтения. Информация записывается на компакт-диск в виде файлов. Компакт-диск для записи вставляется в оптический дисковод компьютера. Информация на компакт-дисках записывается с помощью лазера.

Компакт-диски, предназначенные только для чтения, часто представляют собой какие-либо обучающие программы, записанные продавцом этих программ.

фильмы, в том числе обучающие, аудиозаписи.

Компакт-диски, предназначенные только для чтения обозначаются так: CD-ROM (в переводе - память только для чтения)

Вот, например, на этот компакт-диск я записала архив моего сайта "Пенсионерка" за два года на всякий случай. При этом с компьютера эти файлы я удалила, так как сайт развивался, многое изменялось, и уже нет смысла хранить все файлы в текущей рабочей папке компьютера, занимая место. Этот компакт-диск можно только читать, нельзя перезаписать или добавить другие файлы. В то же время можно при необходимости скопировать файлы с диска обратно на компьютер.
Данный диск имеет специальный слой, позволивший напечатать на струйном принтере обложку, этикетку диска с надписями и картинками. Эта технология с тех пор уже устарела. Сейчас разработаны технологии, с помощью которых обложку, этикетку с надписями и картинками можно нанести на диск, просто перевернув его в дисководе другой стороной. Для этого нужно купить чистый компакт-диск "с поддержкой LightScribe", если вам известно, что ваш дисковод поддерживает эту технологию.

Проще всего вместо изготовления этикеток делать на диске надпись специальным фломастером, который можно купить в компьютерном магазине.

Компакт-диски, предназначенные для однократной записи информации и для чтения имеют в обозначении букву "R",
CD-R или DVD+R или DVD-R
а для многократной записи буквы "RW":
DVD+RW
Компакт-диски DVD имеют больший объём, чем CD, и являются более универсальными. На такой универсальный диск можно записать любые файлы, в том числе, аудио и видео. Существуют аудио-диски - Audio-CD, предназначенные только для прослушивания в аудио-плеере. Эту аудио-запись можно также воспроизвести в компьютере при наличии в нём установленной программы воспроизведения.

Покупая компакт-диски для записи информации , нужно иметь в виду, что они отличаются скоростью записи и объёмом. Выглядит это так:

DVD + R - диск только для однократной записи (в том числе, видео) и для чтения.
16х - скорость записи - средняя
Объём диска - 4, 7 GB гигабайт
В коробке - 25 пустых дисков (болванок)

CD-R - диск только для однократной записи (в том числе, видео) и для чтения.
Объём диска - 700 MB меньше, но зато скорость больше - 52х, количество дисков в коробке - 10 шт.

DVD + RW - диск для многократной записи, стирания, перезаписи и чтения.
Скорость записи от 1 до 4x
Объём диска - 4, 7 GB гигабайт

Для записи или считывания файлов на компакт-диск его вставляют в дисковод стационарного компьютера или ноутбука. Нажатием кнопки выдвигается панель дисковода, куда аккуратно укладывается диск зеркальной стороной вниз.

Повторным нажатием кнопки панель с диском вдвигается обратно.

В случае если необходимо перенести на внешний носитель большой объём информации, создавая, например, музыкальную коллекцию, видеотеку или коллекцию картин, используют внешние жёсткие диски . Они обычно имеют небольшие размеры и вес, большой объём для хранения информации, высокую скорость записи и считывания, а также долговечны. Сохранение коллекции файлов на жёстком диске не требует физического места в квартире.

В то время как для хранения коллекции на компакт-дисках требуются специальные стойки и место для них.

Кроме того, компакт-диски легко поцарапать, в результате чего нельзя будет прочитать записанные файлы. Надёжность хранения файлов на жёстком диске значительно выше. Информацию на внешнем жёстком диске можно многократно перетирать и перезаписывать и, разумеется, считывать.

Жёсткие диски существуют различного внешнего вида и с различными параметрами.

Они подключаются к компьютеру при помощи кабеля с разъёмом USB.

Существуют также внешние миниатюрные устройства для записи и хранения информации, которые называются "флеш-память" или "флеш-накопитель" или просто "флешка" . В основе этого устройства находится микросхема, которая умеет сохранять информацию даже при отключении питания. Флеш допускает многократную перезапись информации. Современные флешки последних моделей по объёму памяти даже превосходят компакт-диски.

Флеш-накопители удобны по причине малых размеров и простоты подключения не только к компьютеру, но, например, даже к телевизору. Современные цифровые телевизоры позволяют воспроизводить кинофильмы, записанные на флеш-накопителе в некоторых определённых форматах. Флешка вставляется в имеющееся на корпусе телевизора гнездо "USB".

© 2024 Windows. Инструкции. Программы. Железо. Ошибки